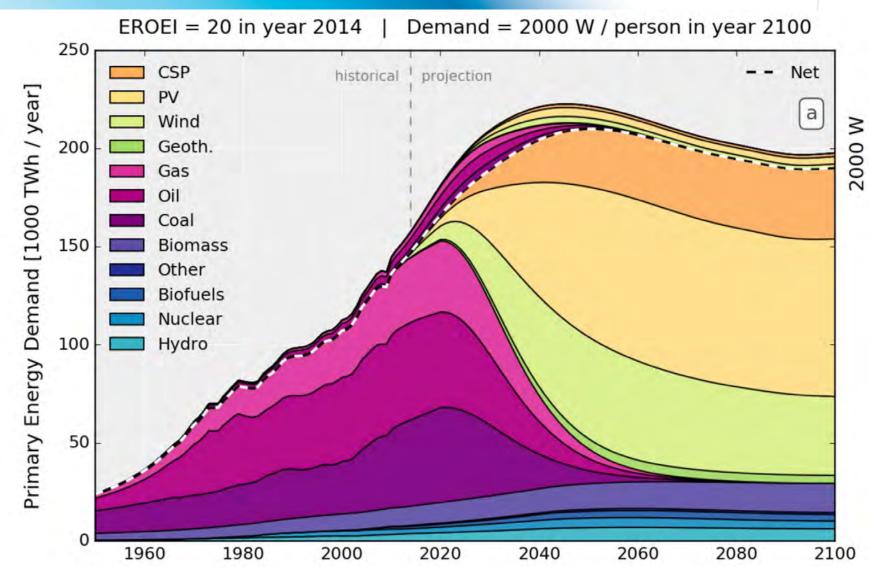
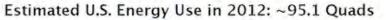
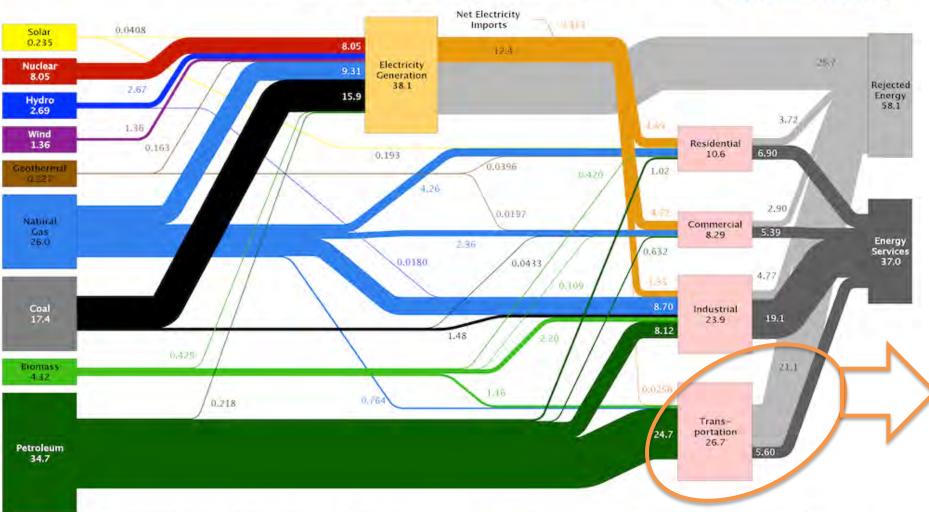
The Transportation Transition Challenge: EV potential for the UAE


Sgouris Sgouridis
Associate Professor

Engineering Systems and Management

OUTLINE


- The energy transition challenge and transportation electrification
- A survey analysis of UAE drivers' perception of EVs
- Overcoming technical and economic barriers
 - Climate and range
 - Charging Infrastructure
- Potential opportunities and diffusion patterns


→ Fossil fuels *are* on the way out –better design our future infrastructure accordingly

Source: Sgouridis, Csala, Bardi (2016)

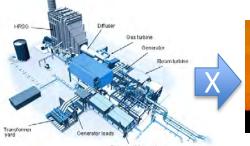
A LOOK AT THE ENERGY PICTURE FOR TRANSPORT

Source: LLNL 2013. Data is based on DDE/EIA-0035(2013-05), May, 2013. If this information or a reproduction of it is used, credit must be given to the Lawrence Livermore National Laboratory and the Department of Energy, under whose auspices the work was performed. Distributed electricity represents only retail electricity sales and does not include self-generation. EIA reports consumption of renewable resources (i.e., hydro, wind, geothermal and solar) for electricity in BTU-equivalent values by assuming a typical fossil fuel plant "heat rate." The efficiency of electricity production is calculated as the total retail electricity delivered divided by the primary energy input into electricity generation. End use efficiency is estimated as 65% for the residential and commercial sectors 80% for the industrial sector, and 21% for the transportation sector. Totals may not equal sum of components due to independent rounding. LINL-MI-410527

argest energy utilizing sector (39%) efficiency (~20%)

SOURCE TO WHEEL EFFICIENCY

The advantage of electrification

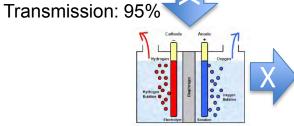


ICEV RTW efficiency: 16.6%

Refinery & dist. efficiency: 83%

ICE efficiency: 20%

NG CCGT: 45%



Transmission & charging: 92%

Battery & E-motor efficiency: 80%

Electrolysis & H2 dist: 70%

Fuel Cell: 70%

E-motor efficiency: 80%

Fuel Cell RTW efficiency: 16.8%

BEV RTW efficiency: 33%

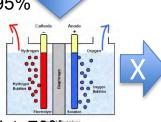
SOURCE TO WHEEL EFFICIENCY

The advantage of electrification

ICEV RTW efficiency: 16.6%

Refinery & dist. efficiency: 83%

ICE efficiency: 20%



PV and CSP + storage: 90%

Transmission & charging: 92%

Battery & E-motor efficiency: 80%

PEM Anode/Catalyst
Flow Plates Cathode/Catalyst

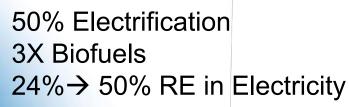
Oxygen

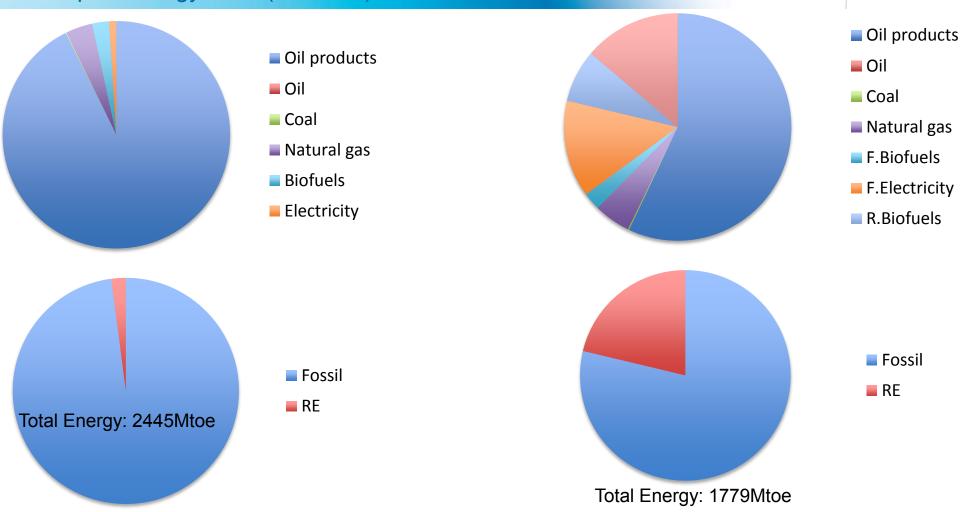
Fuel Cell RTW efficiency: 16.8%

Electrolysis & H2 dist: 70%

Fuel Cell: 70%

E-motor efficiency: 80%


ELECTRIFICATION AS THE FUTURE


The future of Energy is Renewable (centralized & distributed) so the future of Transport is Electric (with some biofuel/ammonia/hydrogen carriers)

Transport Energy 2011 (IEA data)

The challenge is that in 5 decades it should be 100%

AWARENESS AND EFFICIENCY

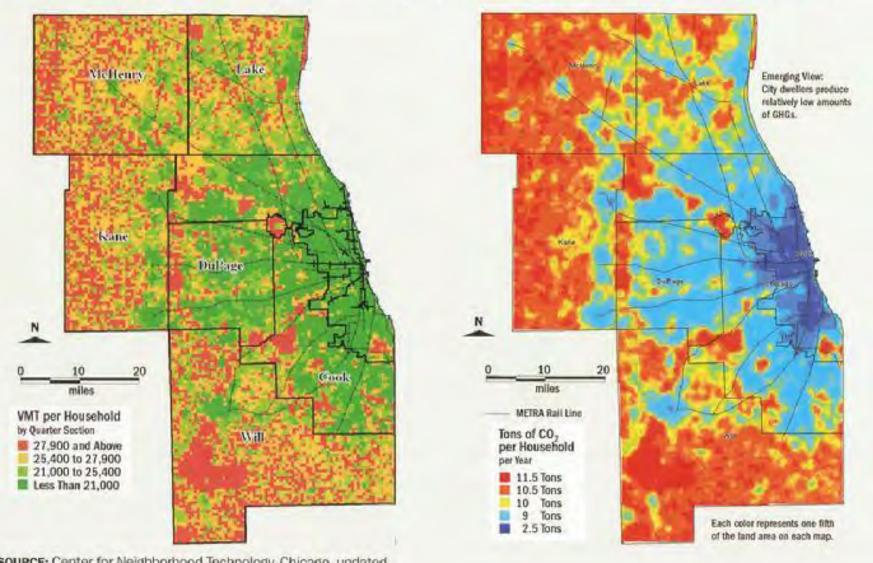

A smart city should be self-aware of its use intensity of material and energy resources and continuously strive for improving their efficiency

Figure 1.2: Infrared image showing heat loss from New York City buildings

ENERGY AND EMISSIONS BY HOUSEHOLD WITH DENSITY

Close Relationship between VMT per Household and CO2 Emissions in the Chicago Metropolitan Area

SOURCE: Center for Neighborhood Technology, Chicago, undated.

An integrated Approach to Study the Feasibility of EVs and Public Transportation

Technology

- Electric grid
- Transportation network
- Intelligent transportation systems

Social Acceptance

- Cultural barriers
- Consumer demand
- Public attitudes

Policy

- Incentives
- Dedicated lanes/parking
- Infrastructure

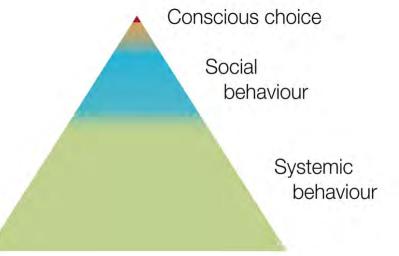
HOW DO WE GET TO ELECTRIFICATION?

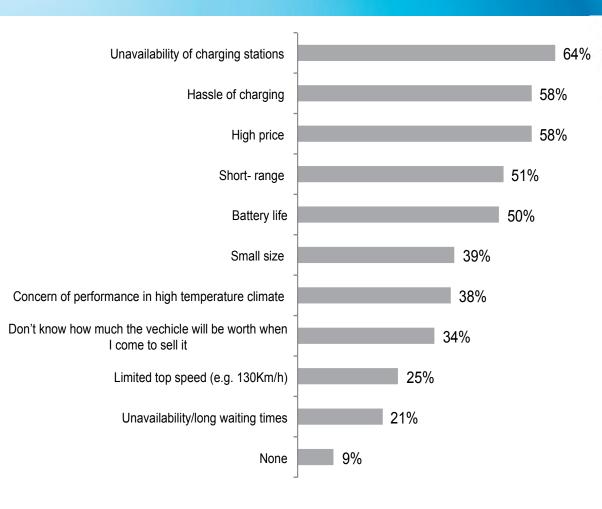
Markets and Infrastructure

Economists advise planners and policy makers that:

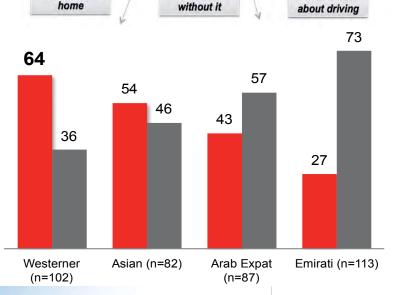
- the best choices will be given to consumers automatically (markets)
- Consumers will choose the best for themselves (rational choice theory) and
- the optimum societal outcome will "magically" emerge (invisible hand)

Alas reality is not A fairy tale ...

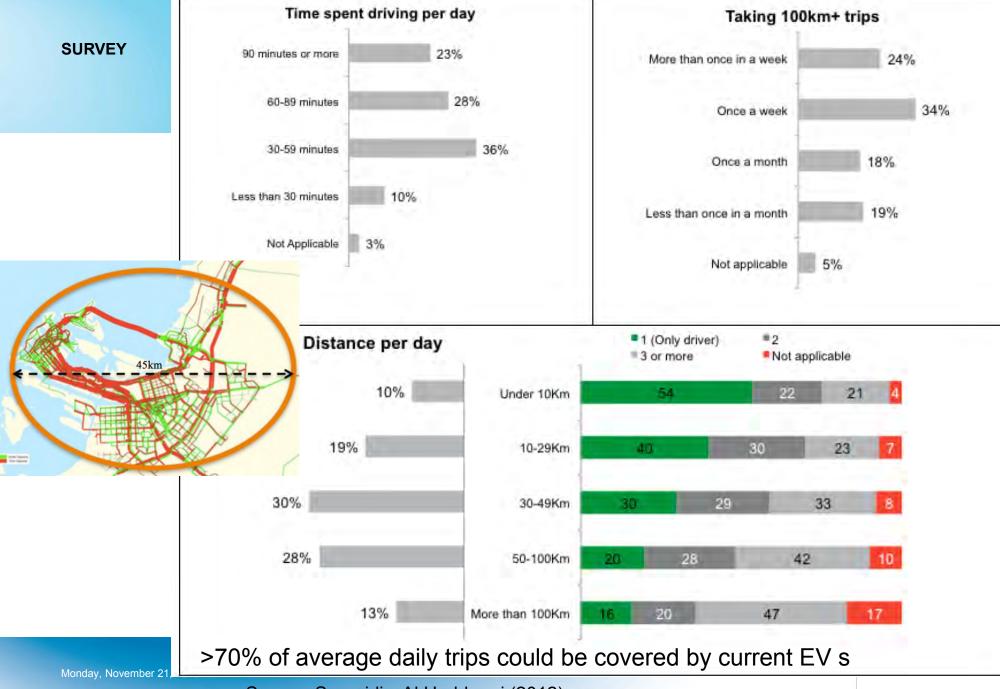



Image: http://www.smallanddeliciouslife.com

MARKETS INFRASTRUCTURE AND SOCIETY


Survey Responses

Passionate

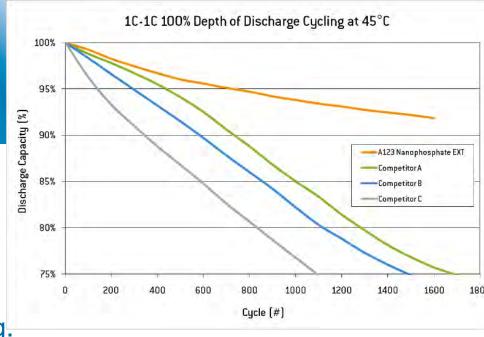

■Yes ■No

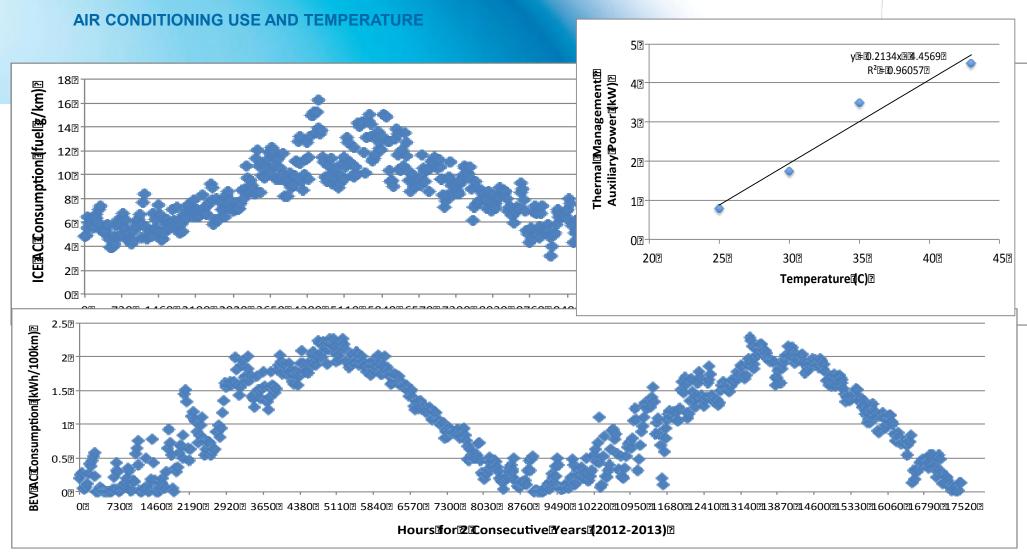
Can't live

My second

Monday, November 21, 2016

Source: Sgouridis, Al Hadrhami (2012)


Source: Sgouridis, Al Hadrhami (2012)


BEV IN HOT CLIMATE

Battery Life and Range

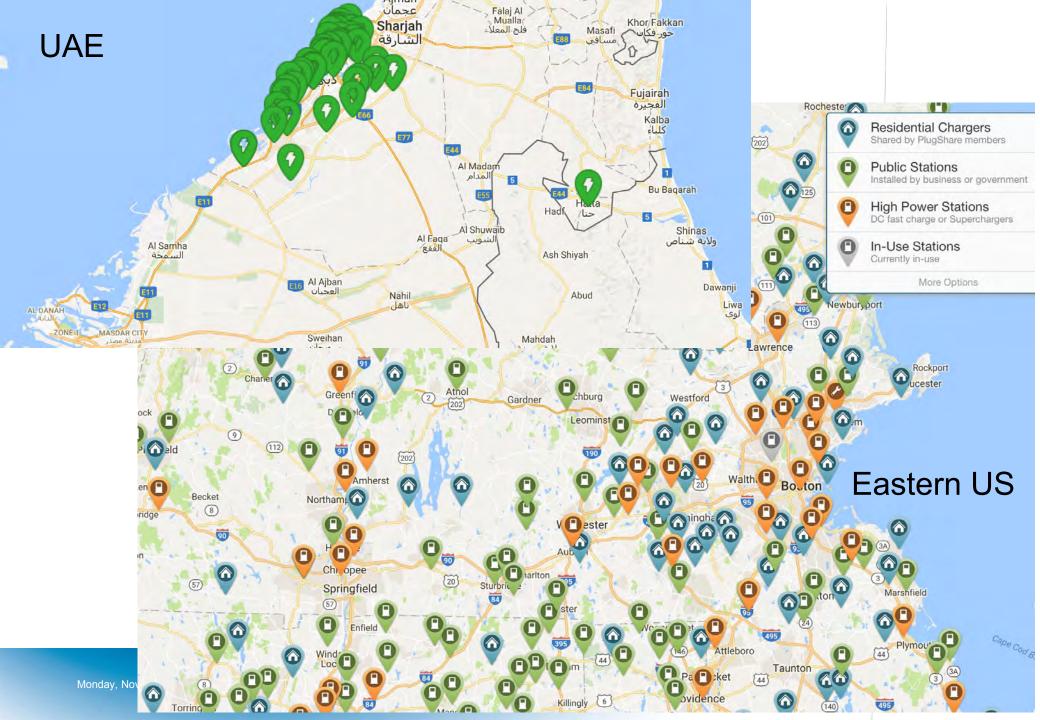
Reduced battery lifetime due higher operating temperatures?

- Li-Ion batteries are sensitive to overheating.
- Operating temperatures max of 50C to prevent accelerated cell deterioration ambient outdoor parking temperature in UAE!
- Options include:
- active cooling (e.g. Tesla Model S),
- air cooling (Nissan Leaf 2014-16)
- advanced battery chemistry (e.g. Nanophosphate EXT Li-lon allows higher operating temps)

→ AC use reaches about 10% of the fuel consumption of the vehicle in the warmest days

CHARGERS: HOW MANY DO WE NEED?

Infrastructure Support


Availability of Electric Vehicle Supply Equipment (EVSE):

- Providing the required infrastructure is essential to incentivize the public to adopt the new technology
 - Amsterdam 1000 public charging stations in 2013
 - Barcelona: 4400 slow charging stations and 20 fast charging stations in 2014
 - UK: 8,500 charging points
 - Shanghai: ratio of 1.2-1.5 charging stations per EV
 - Kanagawa: install 1,000 100/200V outlets and 100 DC quick in 2014.
 - Dubai: 100 public charging stations in 2016

Source (CO2 Emissions Mix): City of Portland and Multnomah County Climate Action Plan, 2009. EV & EVSE photo provided by Portland General Electric

UAE does not have to follow exactly the same with longer-range EVs coming online but still charging infrastructure will be needed

Туре	Level 1	Level 2	Level 3 (Fast Charg
Picture			
Charging Rate	2 to 5 miles/hour	10 to 20 miles /hour	60 to 80 miles in 20 minutes
Charging Time (for a 20kWh, 82-mile of range EV)	16.4 to 41 hours	4 to 8 hours	16 to 22 minutes (80% fast charge)
Power (kW)	< 3	3 to 25	>50
Current	AC	AC	DC
Voltage	120 v	240 v or 208 v	480 v input to EVSE

Range of EV Infrastructure Equipment

Туре	Level 1	Level 2	Level 3 (Fast Charger)
Price of Unit (\$)	Less than 500	1,000 to 7,000	20,000 to 50,000
Installation Cost (\$)	500 to 860	1,000 to 7,400	7,400 upwards
Reported Total Installed Cost (\$)	Up to 1,000	12,000 to 18,000	45,000 to 100,000
Cost of Additional Unit (\$)	-	4,000 – 8,000	-
Cost of Maintenance (\$)	25 to 50 per year	25 to 50 per year	25 to 50 per year

MARKETS INFRASTRUCTURE AND SOCIETY

LDV	BEV				ICEV	
Rated Battery size / Fuel Tank	23 kWh	(Li-ion, liqui	d-cooled)	47 liters		
		available				
	25 kWh 1	nominal (max	discharge			
		92%)				
Rated battery cycles		2500			N/A	
Power	1	07kW (143 h	p)	1	19kW (160 h	p)
Glider cost (incl. engine) (\$USD)	24	1,500 (estimat	ed)	25,500		
Battery cost (\$USD) (@\$425/kWh)	10,625			N/A		
Vehicle cost (\$USD)	35,125 (including 6.6kW on-board			25,500		
<u>.</u>	charger)					
Maintenance cost (\$USD)	\$50/10,000km			\$250/10,000km		
Charging efficiency	92%			N/A		
Motor efficiency	90%				33%	
		kWh/100km	ļ	1/100	0km (kWh/10	0km)
Estimated Consumption (EPA-	City	Highway	Combined	City	Highway	Combined
cycle based)	19.2	21.4	20.1*	8.7 (78.3)	6.4 (57.1)	7.6 (68.2)
Curb weight (kg)	1633			1380		
Range (km)	City	Highway	Combined	City	Highway	Combined
	120	108	114	540	740	620

Battery capacity will be much higher in the next iterations. Tesla Model 3 > 300km. Same for Chevy Bolt and the new Leaf

Monday, November 21, 2016

Source: Sgouridis, Al Hadrhami, Helmers (2016)

MARKETS INFRASTRUCTURE AND SOCIETY

Bus (2-axle)	EB (long-range)	EB (short-range with	ICEB (Euro 4)
		rapid charging)	·
Rated Battery size / Fuel	220 kWh (Nominal)	110 kWh (Nominal)	300liters
Tank	203 kWh (available @	101 kWh (available @	
	92% discharge)	92% discharge)	
	Li-Fe, Liquid Cooled	Li-Fe, Liquid Cooled	
Rated battery cycles	3000	3000	N/A
Power	2x110kW	2x110kW	199kW
Glider cost (incl. engine)	290,000	290,000	300,000
(\$USD)			
Battery cost (\$USD) (@	93,500	46,750	N/A
S425/kWh)			
Vehicle cost (\$USD)	383,500	336,750	300,000
Maintenance cost (\$USD/yr)	30,000	30,000	66,500
Estimated Consumption	115kWh/100km	115kWh/100km	550 kWh /100km
Urban Cycle			(50 l/100km)
Curb weight (kg)	14300	13300	12180
Range per full charge (km)	176	88	600

Buses present a very different business case but require fast charging and charge-at-stops

Monday, November 21, 2016

Source: Sgouridis, Al Hadrhami, Helmers (2016)

A Parametric Analysis

Key parameters for a single EV evaluation

			Battery capacity	20	kWh	
			Usable battery capacity ratio	0.9		
	40		Cycles	4000		
	Vehicle characteristics	Battery	Hot weather battery life penalty	0.9	ratio of actua	al to spec cycles
	rist		Battery life	3312	days	9.1 years
	cte		Max vehicle life	7	years	.,
	ıra		Battery-dependent vehicle life	7.0		
	cha		Consumption (combined assuming reg	150	Wh/km	
) e	Consumption	Hot Weather effective consumption	216.7	Wh/km	
	Jicl		Average effective consumption	195.7	Wh/km	
	⁄eł	Displaced	Consumption	10	l/100km	
		ICEV	Maintenance penalty ICEV	100	\$/10,000km	
		EV/ Dange	Standard	120	km	,
		EV Range	Hot weather range	83.1	km	
			Battery cost	500	\$/kWh	
		•	Base vehicle cost	10000	\$	
	Vehicle Economics		Incremental premium for EV		\$/vehicle	
			EV cost	20000	\$	
			EV Premium	10000	\$,
			Average speed	60	km/h	
	Vehicle utilization		Vehicle utilization		km/day	
	Environmental		# days with average temp > 25C	250	days/year	
	EUVII	onmentai	Hot weather AC consumption penalty	4000	Wh/hour	,
			Gasoline price	0.47	\$/lit	1.72 AED/lit
		Liquid fuel	Unsubsidized gasoline cost	0.79	\$/lit	2.9 AED/lit
		-	Gasoline subsidy	0.32	\$/lit	•
	λ		Electricty price	0.027	\$/kWh	0.1 AED/kWh
	tor		Unsubsidized electricity cost	0.10	\$/kWh	0.367 AED/kWh
	Regulatory	Electricity	Electricity subsidy	0.07	\$/kWh	0.27 AED/kWh
	eg		Electric grid CO2 intensity	0.4	kg/kWh	
	2		CO2 price	30	\$/tonne	
			Infrastructure cost share by user	30%		
		EV Inventives	EV premium share by govt	5%		
			Discount rate	5%		
	ρ		Level 2 charging station cost	2000	\$	
	tur		Level 3 charging station cost	50000	\$	
	truc	Chargers	Level 2 stations per vehicle	0.8		
	Infrastructure	5	Level 3 stations per vehicle	0.02		
	Infi		Charger life		years	
			U		,	

EMISSIONS VALUATIONS

	Gasoline ICE Vehicle (combined)	Diesel Bus Vehicle	Electricity Grid	EV auto (combined)	e-bus (combined)	Suggested UAE value (USD/ton)
	g/km	g/km	g/KWh	g/km	g/km	
CO ₂	174.8	1150	499.0	100.3	573.8	88
CO	1.0000	4.6	0.0328	0.00659	0.0377	886
VOC	0.1000	1.265	0.0020	0.0004	0.0023	5,289
NO _x	0.0600	8.05	0.0738	0.01483	0.0849	6,888
SO ₂	0.0033	0.01	0.0024	0.000478	0.00274	20,418
PM	0.0045	0.1725	0.0019	0.000391	0.00224	397,397

Monetizing the emissions makes sense for buses more than LDVs

Monday, November 21, 2016

Source: Sgouridis, Al Hadrhami, Helmers (2016)

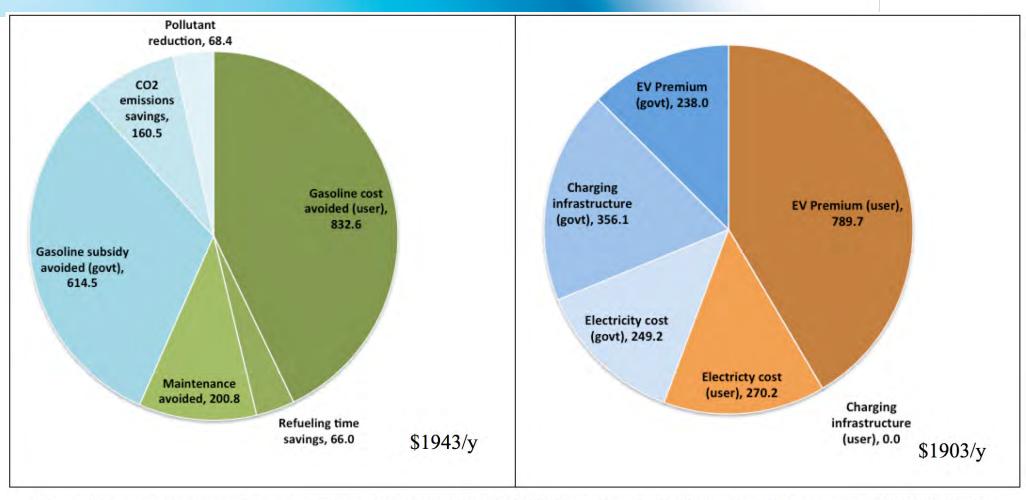
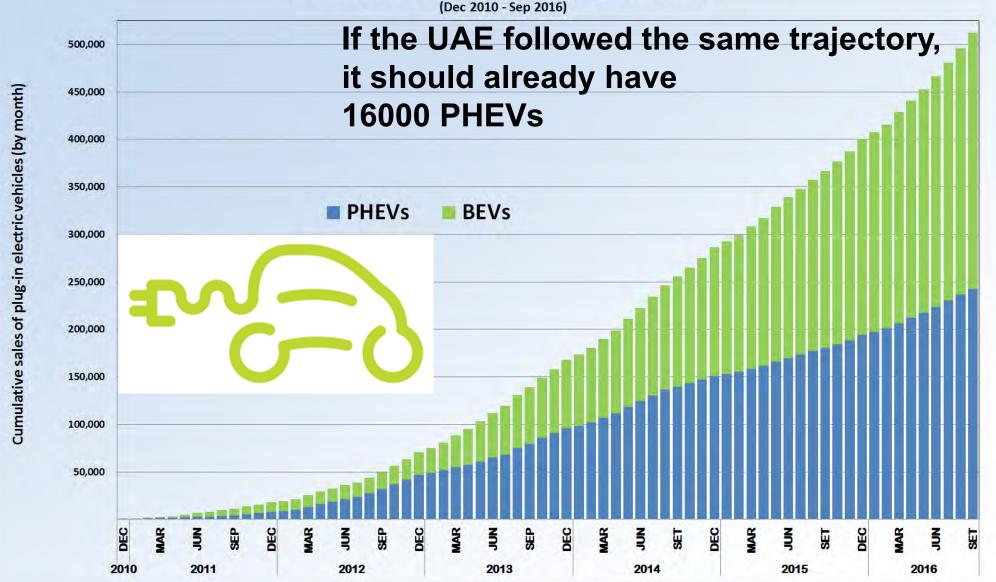


Figure 4 Comparative Annual Benefits (left) and Costs (right) of LDV EV Operations in UAE (for 55km/d average use, \$325/kWh battery

cost). Blue hues denote government and the orange and green private user.

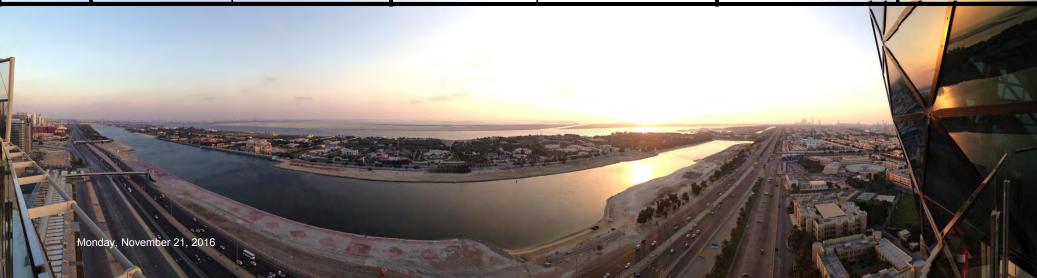
Source: Sgouridis, Al Hadrhami, Helmers (2016)

VALUATIONS


Vehicle Utilization (km/day)

	Battery Cost (\$/kWh)							
km/day	100	200	300	400	500	600		
40	462.6	102.0	-258.6	-619.2	-979.8	-1340.5		
50	721.4	360.8	0.2	-360.4	-721.1	-1081.7		
60	980.2	619.6	259.0	-101.6	-462.3	-822.9		
70	1239.0	878.4	517.8	157.1	-203.5	-564.1		
80	1497.8	1137.2	776.6	415.9	55.3	-305.3		
90	1756.6	1396.0	1035.4	674.7	314.1	-46.5		
100	2002.6	1620.6	1238.5	856.5	474.5	92.5		
110	2242.9	1830.3	1417.6	1004.9	592.2	179.5		
120	2483.3	2039.9	1596.5	1153.1	709.6	266.2		

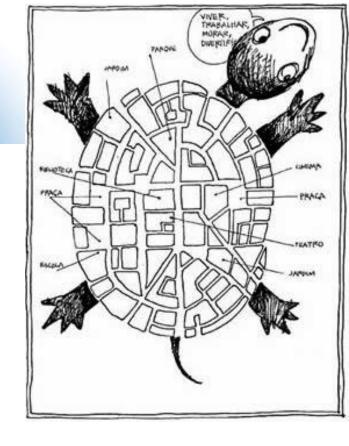
Benefits directly correlate to utilization!


Cumulative U.S. sales of plug-in electric vehicles

by monthly sales of all-electric cars (BEVs) and plug-in hybrids (PHEVs) (Dec 2010 - Sep 2016)

MARKETS INFRASTRUCTURE AND SOCIETY

Year	(discoun	tive Costs ted \$2012)	Cumulative Benefits (discounted \$2012)		Net Benefit	
	EV Premium	Infrastructure	Fuel Savings	Ancillary		
2015	\$ 428,596	\$ 81,720	\$ 208,227	\$ 102,304	\$ (199,784)	
2020	\$ 33,250,967	\$ 26,025,861	\$ 59,977,300	\$ 58,167,663	\$ 58,868,135	
2025	\$ 135,927,670	\$ 95,910,390	\$ 238,557,485	\$ 203,129,832	\$ 209,849,256	
2030	\$ 258,568,606	\$ 195,104,139	\$ 513,405,170	\$ 403,675,042	\$ 463,407,467	
Year	# Car EV	# Bus EV	Cumulative Gasoline/Diesel Saved (000 lit)	Cumulative CO2 avoided (tonnes)	Annual Electricity Consumed (MWh)	Peak Power Equivalent (MW)
2015	166	0	442	431	642	0.2
2020	8101	303	107,951	146,790	100,193	34.3
2025	28258	621	513,019	656,384	270,204	92.5
2030	51604	956	1,269,034	1,585,536	461,603	158.1



CLOSING REMARKS

"It is important to have an integrated view of the city.

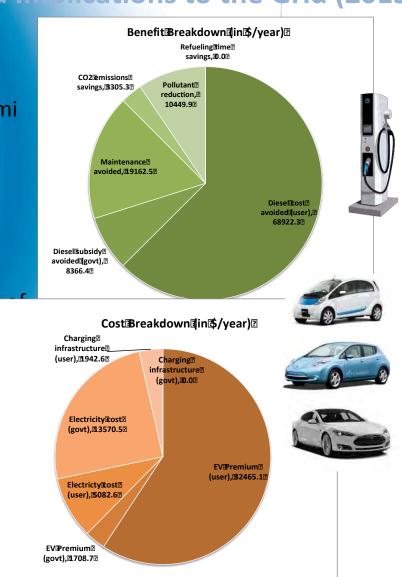
It is like the turtle embodying life, work and movement.

If the turtle's shell is fragmented it will die."

"If you want creativity cut one zero from your budget.

If you want sustainability cut two zeroes.

If you want to make it happen, do it fast!"

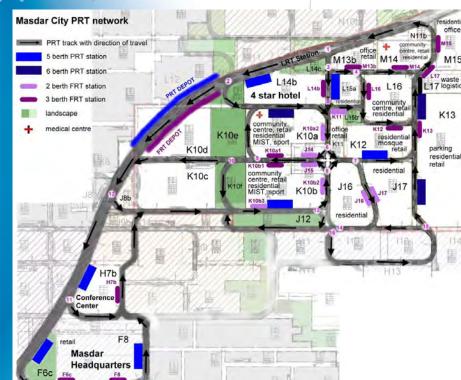

Jaime Lerner, Architect and Mayor of Curitiba

iCenter for Smart and Sustainable Systems

Sample Sponsored Research Project: Transportation

Potential for BEV Adoption in Abu Dhabi and Implications to the Grid (2013)

- Researchers involved
 - A. Farid, S. Sgouridis & Reem al Junaibi, M. Al Hadrhami
- Sponsors / Stakeholders
 - METI, Japan / Mitsubishi Heavy Industries, AD DOT
- Objectives
 - Investigate policy options for supporting the adoption BEVs and examine their societal, economic, and technical challenges.
- Outcomes to date
 - Completed analysis of policy options, survey local drivers and users, BEV economic model, and adoptio rates. EV use simulation and grid limitations.



iCenter for Smart and Sustainable Systems

Sample Research Project: Transportation

Personal Rapid Transit Simulation Mobility (201

- Researchers involved
 - S. Sgouridis & K. Mueller (MSc)
- Sponsors / Stakeholders
 - Masdar City
- Objectives
 - Investigate the PRT system capability and operational optimization under diverse loads.
- Outcomes
 - Advanced PRT simulator (discrete-event) completed. BRT sensible for key OD and peak times

Setup options	Basic	Plus 10	Plus20	Plus30
Demand increase	0%	10%	20%	30%
PRT vehicles	120	120	140	120
Station charging	No	No	Yes	Yes
Supercapacitor	None	None	None	1 kWh
PRT Allocation	Energy	Energy	Service	Service
Mean passenger throughput (pax/h)	715	755	790	840
Max passenger throughput (pax/h)	1240	1270	1350	1430
Average PRT (trips per day)	13 800	14 520	15 270	16 170
Total Freight (t/day)	81	89	97	105
Total Waste (t/day)	22	24	26.5	28
Experimental results	Basic	Plus 10	Plus20	Plus30
PRT utilization (driving full)	37%	34%	25%	21%
Energy consumption	4270 kWh/day	4950 kWh/day	6940 kWh/day	10 000 kWh/day
Tw _{mean} in system	<7 seconds	<62 seconds	<22 seconds	<30 seconds
Tw _{max} at station 10	<720 seconds	<1500 seconds	<420 seconds	<480 seconds

iCenter for Smart and Sustainable Systems

Sample Research Project: Transportation

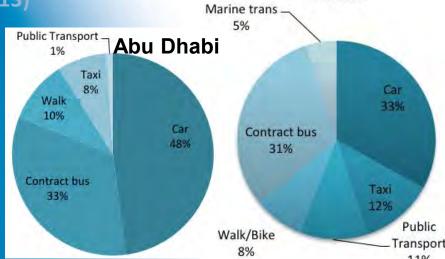
Effects of Public Transportation on Transport Demand (2013)

Researchers involved

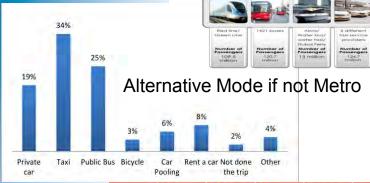
S. Sgouridis & M. Sharhan (MSc)

Stakeholders

- AD DOT, RTA


Objectives

Investigate the preferences and perceptions of UAE transport users for public transit.


Outcomes

- Car owners entrenched. Less than 25% of Dubai Metro surveys owned a car. Metro increases mobility provides alternative to car for ~50% of the pax trips.
- System dynamics model initiated.

Dubai

	Work (Base 288)	School drop/pick up (Base 83)	Leisure (Base 316)	Shopping (Base 321)	Sports activities (Base 152)
Private vehicle	92	81	92	93	86
Taxi	1	2	2	1	1
Bus	2	12	2	2	5
Car pooling	2	4	1	2	3
Metro	1	1	1	2	1
Bicycle	0	0	0	0	3
Other	2	0	1	0	1